

What is VOACAP Trying to Tell Me?

A Presentation to The Yankee Clipper Contest Club

Feb. 1, 2003 Milford, CT

by Dean Straw, N6BV Senior Assistant Technical Editor, ARRL

VOACAP

- *VOACAP* has been under development by the US government for more than three solar cycles.
- *VOACAP* is recognized as being an accurate propagation-prediction program.

•*VOACAP* produces *reams* of output data and forces the user to make information from it!

There is a big difference between *data* and *information*.

You must give *VOACAP* a number of parameters before it can do a propagation prediction.

The most important selections are the Method and the Antennas used.

VOACAP Methods

- There are 30 "Methods" in VOACAP.
- Most are not useful to the contester.
- I use Method 25 (All Modes) and Method 30 (short-long path smoothing) most often.
- Method 30 gets rid of anomalies between 7,000 to 10,000 km (what *IONCAP* calls "short" and "long" paths).

VOACAP Methods

ange propagation METHOD	×	
Accept Cancel		
Select the Propagation METHOD to use:		
1 = Ionospheric parameters		
2 = lonograms		
3 = MUF-FOT lines (nomogram)		
4 = MUF-FOT graph (use 11 or 28)		
5 = HPF-MUF-FOT graph		
6 = MUF-FOT-Es graph (use 11)		
7 = FOT-MUF table (full ionosphere)		
8 = MUF-FOT graph (use 11 or 28)		
9 = HPF-MUF-FOT graph		
10 = MUF-FOT-ANG graph		
11 = MUF-FOT-Es graph - real graph, not line printer		
12 = MUF by magnetic indices. K(not implemented)		
13 = Transmitter antenna pattern		
l 4 = Receiver antenna pattern		
15 = Both transmitter & receiver antenna patterns		
16 = System performance (S.P.)		
17 = Condensed system performance, reliability		
18 = Condensed system performance, service probability		
19 = Propagation path geometry		
20 = Complete system performance (C.S.P.)		
21 = Forced long path model (C.S.P.)		
22 = Forced short path model (C.S.P.)		
23 = User selected output (set by TOPLINES & BOTLINES)		1 1
24 = MUF-REL table	All modes ta	ble
25 = All modes table		
26 = MUF-LUF-FOT table (nomogram)		
27 = FOT-LUF graph (use 28)		.1 •
28 = MUF-FOT-LUF graph - real graph, not line printer	S/L path smc	oth1r
29 = MUF-LUF graph (use 28)	-	
30 = For VOACAP only - S/L path smoothing (7-10000 km) 🛛 🧲		

VOACAP Method 25 Output

CCIR Coefficients ~METHOD 25 VOACAP 02.1106W PAGE 2

Feb	2003	SSN = 90.		Minimum Ang	gle= 0.100	degrees
BOSTOR	J	LONDON	AZ	IMUTHS	N. MI.	KM
42.37	N 71.05 W	- 51.50 N 0).17 W 53	.15 288.25	2840.2	5259.6
XMTR	2-30 + 10.0	dBi[samples\SA	MPLE.00]	Az= 53.2 OFF8	az=360.0	15.000kW
RCVR	2-30 + 10.0	dBi[samples\SA	MPLE.00]	Az=293.1 OFF8	az=355.1	
3 MHz	NOISE = -163	.6 dBW REQ). REL = 50%	REQ. SNR =	43.0 dB	

SUMMARY	3 MODES	FREQ = 7	.2 MHZ UT	= 1.0		
				Most REL		Mode
	2.F2	3.F2	3. E	2.F2		1110 40
TIME DEL.	18.41	19.17	17.88	18.41		
ANGLE	7.06	16.30	4.10	7.06		– Elev. angle
VIR. HITE	311.51	332.19	125.30	311.51		-
TRAN.LOSS	123.63	125.75	947.56	123.63		
T. GAIN	10.00	10.00	10.00	10.00		
R. GAIN	10.00	10.00	10.00	10.00		
ABSORB	4.09	2.66	4.62			
FS. LOSS	124.43	124.79	124.18			O_{1}^{\prime} = 1 = 1 = 1 DW
FIELD ST.	32.48	30.36	-791.46	34.56		- Signal power, dBw
SIG. POW.	-81.86	-83.99	-905.80	-79.79		OND : 1 $II - DW$
SNR	76.25	74.13	-747.69	78.33		- SNK, IN I HZ BW
MODE PROB	0.99	0.83	0.00	0.99		— Mode probability
R. PWRG	1000.00	1000.00	1000.00	-35.33		
RELIABIL	1.00	0.99	0.00	1.00		
SERV PROB	1.00	1.00	0.00	1.00		All modes for one
SIG LOW	9.09	15.16	8.61	10.55		
SIG UP	4.88	5.39	4.86	5.08		frequency for each
NOISE =	-158	S. POWER =	-79.8			in equency, for each
SIGNAL =	8.6 10).1 4.9	/ 1.8	5.7	1.0	hours the output
NOISE =	6.2 -158	3.1 5.1	/ 2.2	3.3	2.0	nour the output
RELIAB =	7.2 78	3.3 12.2				
SPROB =	6.8 76	5.2 6.8				tile is huge!

Sample VOACAP Method 25 Output

CCIR Coefficients

~METHOD 25

VOACAP 02.1106W PAGE 2

> 1.0 2.0

Feb	2003	SSN = 90			Minimum An	gle= 0.100	degrees
BOSTOR	J	LONDON		AZIM	UTHS	N. MI.	KM
42.37	N 71.05 W	- 51.50 N	0.17 W	53.1	5 288.25	2840.2	5259.6
XMTR	2-30 + 10.0	dBi[samples\;	SAMPLE.00] A	z= 53.2 OFF	az=360.0	15.000kW
RCVR	2-30 + 10.0	dBi[samples\;	SAMPLE.00] A	z=293.1 OFF	az=355.1	
3 MHz	NOISE = -16	3.6 dBW RI	EQ. REL =	50%	REQ. SNR =	43.0 dB	

SUMMARY	3 MODES	FREQ = 7	2.2 MHZ UT	= 1.0
				Most REL
	2.F2	3.F2	3. E	2.F2
TIME DEL.	18.41	19.17	17.88	18.41
ANGLE	7.06	16.30	4.10	7.06
VIR. HITE	311.51	332.19	125.30	311.51
TRAN.LOSS	123.63	125.75	947.56	123.63
T. GAIN	10.00	10.00	10.00	10.00
R. GAIN	10.00	10.00	10.00	10.00
ABSORB	4.09	2.66	4.62	
FS. LOSS	124.43	124.79	124.18	
FIELD ST.	32.48	30.36	-791.46	34.56
SIG. POW.	-81.86	-83.99	-905.80	-79.79
SNR	76.25	74.13	-747.69	78.33
MODE PROB	0.99	0.83	0.00	0.99
R. PWRG	1000.00	1000.00	1000.00	-35.33
RELIABIL	1.00	0.99	0.00	1.00
SERV PROB	1.00	1.00	0.00	1.00
SIG LOW	9.09	15.16	8.61	10.55
SIG UP	4.88	5.39	4.86	5.08
NOISE =	-158	S. POWER =	-79.8	
SIGNAL =	8.6 10	0.1 4.9	/ 1.8	5.7
NOISE =	6.2 -158	3.1 5.1	/ 2.2	3.3
RELIAB =	7.2 78	3.3 12.2		
SPROB =	6.8 76	5.2 6.8		

Two 7.2-MHz modes: 2.F2 at 7.06° and 3.F2 at 16.30° takeoff angles.

The signal power at the receiver is -81.86 dBW and -83.99 dBW -- very close, so fading can easily occur.

Sample VOACAP Method 25 Output

Let's drill down and look more closely at the information around 1200 UTC, East-Coast sunrise on 15 meters.

Here's how to convert from dBW to $dB\mu V$:

 $dB\mu V = 137 + dBW$ Now, 34 $dB\mu V = S9$ So, -103 dBW = S9, and -93 dBW = S9+10.

Edited VOACAP Method 25 Output

VOACAP's choice of Most Reliable Mode (MRM) = 56% of days in the month

Edited VOACAP Method 25 Output

UT = 12.0 ANGLE SIG. POW. SNR MODE PROB	2.F2 7.04 -98.66 82.59 0.56	2.F2 10.25 -112.02 69.22 0.56	2.F2 7.04 -98.46 82.78 0.56		12 UT weake	C: Pedersen wave on 2.F2 is
UT = 13.0	2.F2	2.F2				
ANGLE	4.64	4.64		10 T		1 1 1 1
SIG. POW.	-92.39	-92.39		— 13 L	/IC: I n	node only, no Pedersen
SNR	87.95	87.95				
MODE PROB	0.89	0.89				
UT = 14.0	2.F2	3.F2	3.F2	3. E	2.F2	
ANGLE	4.40	13.89	17.01	4.10	4.40	$14 \text{ UTC} \cdot 3 \text{ modes} \cdot$
SIG. POW.	-93.26	-102.87	-113.59	-686.02	-92.77	
SNR	85.94	76.33	65.60	-506.82	86.42	Pedersen on 3 F2
MODE PROB	0.92	0.41	0.41	0.00	0.92	
UT = 15.0	2.F2	3.F2	3.F2	3. E	2.F2	
ANGLE	4.78	14.03	18.30	4.10	4.78	$15 \text{ UTC} \cdot 3 \text{ modes} \cdot$
SIG. POW.	-93.70	-101.82	-118.36	-857.80	-93.07	
SNR	85.58	77.46	60.92	-678.52	86.21	Pedersen on 3 F2
MODE PROB	0.93	0.47	0.47	0.00	0.93	
UT = 16.0	2.F2	3.F2	3.F2	3. E	2.F2	
ANGLE	4.86	14.68	18.16	4.10	4.86	$16 \text{ UTC} \cdot 3 \text{ modes} \cdot$
SIG. POW.	-92.68	-102.42	-116.01	-919.18	-92.22	
SNR	86.71	76.96	63.37	-739.80	87.17	Pedersen on 3 F2
MODE PROB	0.93	0.44	0.44	0.00	0.93	
UT = 17.0	2.F2	2.F2				
ANGLE	5.02	5.02		17 T	$TC \cdot 1 m$	ada antre na Dadaman
SIG. POW.	-90.60	-90.60	-	- 1 / U	10:1 m	loue only, no redersen
SNR	88.90	88.90				
MODE PROB	0.94	0.94				

VOACAPAntenna Selection

- To see a propagation prediction without bias due to antenna type or height, I usually choose "isotropic" Tx and Rx antennas, but with +10 dBi gain to simulate real-world gains.
- The resulting gain shows in the TGAIN and RGAIN lines in the output printout.

MUF

VOACAP Method 30 Output

Feb	2003	ssn =	90.	М.	inimum An	gle= 0.100	degrees
BOSTON	1	LONDON		AZIMUT:	HS	N. MI.	KM
42.37	N 71.05 W	J – 51.50 N	0.17 W	53.15	288.25	2840.2	5259.6
XMTR	2-30 + 10.0) dBi[sample:	s∖SAMPLE.O(] Az=	53.2 OFF	az=360.0	15.000kW
RCVR	2-30 + 10.0) dBi[sample:	s∖SAMPLE.O() Az=3	293.1 OFF	az=355.1	
3 MHz	NOISE = -16	53.6 dBW	REQ. REL =	:50% R	EQ. SNR =	43.0 dB	
MULTIP	PATH POWER 7	OLERANCE =	3.0 dB 🛛 🛚	IULTI PATH	DELAY TOL	ERANCE =	0.100 ms

1.0 10.5 3.6 7.2 14.1 21.2 28.4 0.0 FREQ 0.0 0.0 0.0 0.0 0.0 2F22F22F22F22F22F2MODE 7.1 12.4 12.4 12.4 TANGLE 12.46.8 18.419.118.4 19.1 19.1 DELAY 19.1 312 453 V HITE 453 305 453 453 0.50 1.00 0.99 0.07 0.00 0.00 MUFday 139 129 124 184 364 LOSS 409 24 35 -22 -199 -241 20 DBU -84-80 -143 -322 -368 -97 S DBW -167 -148 -158 -176 -183 -186 N DBW 70 63 34 -139 -182 SNR 78 -20 -35 225 -27 9 182 RPWRG 0.91 0.99 1.00 0.32 0.00 0.00 REL 0.00 0.95 0.99 0.00 0.00 0.00 MPROB 1.00 0.99 1.00 0.07 0.00 0.00 S PRB 8.6 10.6 25.0 25.0 25.08.6 SIG LW 5.1 25.0 25.0 SIG UP 20.8 4.9 4.9 25.5 11.9 12.2 25.9 26.1 11.3 SNR LW 8.2 7.2 25.1 25.1 21.15.5 SNR UP 10.0 10.0 10.0 10.0 10.0 10.0 TGAIN 10.0 10.0 10.0 10.0 10.0 10.0 RGAIN 70 78 34 -139 -182 63 SNRxx

Summary of all frequencies for each hour

VOACAP Graph Output

This looks pretty, but it doesn't really give that much useful information for contest planning!

VOACAP Output Information

I use two types of information from *CAPMAN/VOACAP*:

- Elevation angle statistics
- Signal-strength predictions

Elevation-Angle Statistics

- About ten years ago I started a detailed study at ARRL HQ on the range of elevation angles needed for communication between various QTHs around the world.
- I used the *VOACAP* program, along with some proprietary software, to create some *huge* databases. From these, elevation I generated statistics for 150+ QTHs around the world.

Elevation-Angle Statistics

A tiny portion of the raw database from Boston to the world.

RxQTH	Freq	SSN	Month	Hour	dBuV	Elev	Rel	Mode
London	3.6	5	2	0	38.5	5.6	0.690	2.F2
London	3.6	5	2	0	35.9	13.0	0.580	3.F2
London	3.6	5	2	0	33.6	19.4	0.490	4.F2
London	3.6	5	2	1	38.9	5.6	0.660	2.F2
London	3.6	5	2	1	36.4	13.1	0.570	3.F2
London	3.6	5	2	1	34.3	19.6	0.500	4.F2
London	3.6	5	2	2	38.3	5.5	0.620	2.F2
London	3.6	5	2	2	35.7	13.0	0.530	3.F2
London	3.6	5	2	2	33.7	19.5	0.420	4.F2
London	3.6	5	2	3	37.9	5.5	0.640	2.F2
London	3.6	5	2	3	35.3	13.0	0.550	3.F2
London	3.6	5	2	3	33.3	19.4	0.470	4.F2
London	3.6	5	2	4	39.6	5.6	0.710	2.F2
London	3.6	5	2	4	37.1	13.2	0.630	3.F2

Elevation-Angle Statistics

- The resulting elevation-angle files are on the CD-ROM in *The ARRL Antenna Book*. They contain statistical averages over the entire 11-year solar cycle -- for all months of the year and for all hours of the day.
- These statistical files are used by the *YT* and *HFTA* terrain-assessment programs.

Sample Table, Boston to Europe

Boston,	Massach	usetts	to Euro	pe				
Elev	80m	40m	30m	20m	17m	15m	12m	10m
1	4.1	9.6	4.6	1.7	2.1	4.4	5.5	7.2
2	0.8	2.3	7.2	1.4	2.8	2.8	3.7	5.3
3	0.3	0.7	4.3	3.1	2.4	2.2	4.4	7.9
4	0.5	4.1	8.7	11.6	12.2	9.4	8.1	3.9
5	4.6	4.8	7.5	12.7	14.3	13.1	9.2	11.2
6	7.1	8.9	5.5	9.2	9.6	12.2	9.2	7.2
7	8.5	6.9	7.2	4.6	7.9	7.4	10.0	5.9
8	5.1	7.0	5.4	3.2	5.9	7.4	4.8	6.6
9	3.3	5.6	3.2	3.1	2.1	3.9	8.1	9.2
10	1.0	4.0	7.9	6.3	5.1	3.7	11.1	6.6
11	1.9	3.8	9.7	10.2	7.2	5.4	3.7	7.9
12	5.6	3.4	4.8	8.5	6.9	7.4	4.8	6.6
13	11.0	3.0	2.4	4.1	5.9	4.6	3.3	2.6
14	7.6	4.8	2.0	2.7	3.8	3.9	6.3	5.9
15	5.3	7.9	2.0	1.5	2.4	1.7	1.5	2.0
16	2.8	6.4	3.8	2.9	1.5	1.3	2.6	2.6
17	5.0	3.4	4.5	3.1	1.0	1.5	0.0	0.0
18	4.2	2.0	3.1	3.1	2.0	2.2	1.8	1.3
19	5.7	1.4	1.4	2.3	1.3	0.7	0.0	0.0
20	6.6	1.4	1.2	1.8	1.1	1.3	0.7	0.0
21	4.4	1.4	0.5	0.8	0.7	0.7	0.4	0.0
22	2.3	2.4	1.0	1.1	0.6	1.3	0.7	0.0
23	1.3	1.8	0.1	0.3	0.1	0.0	0.0	0.0
24	0.6	1.0	0.5	0.5	0.4	0.7	0.0	0.0
25	0.3	0.8	0.3	0.1	0.4	0.0	0.0	0.0
26	0.0	0.5	0.7	0.2	0.1	0.4	0.0	0.0
27	0.1	0.1	0.1	0.2	0.1	0.2	0.0	0.0
28	0.0	0.3	0.1	0.2	0.0	0.2	0.0	0.0
29	0.1	0.0	0.2	0.0	0.0	0.0	0.0	0.0
30	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0

One Picture = 1000 Words

Output Graph, HFTA

<u>_ | × | × | </u>

Propagation Predictions

YCCC members are familiar with the predictions I provide for the major DX contests (CQWW Phone, CW and ARRL DX Phone, CW).

These show tables of predictions, one page per band. Each page shows predictions for 40 CQ Zones, for 24 hours.

These are computed for undisturbed ionospheric conditions.

Sample Propagation Prediction

15 Meters: Feb. 2003, YCCC, for SSN = High, Sigs in S-Units. By N6BV, ARRL.																								
Zone	00	01	02	03	04	05	06	07	0.8	0.0	10	11	12	13	14	15	16	17	18	10	20	21	22	23
KL7 = 01	õ	5	1	-		-	~~		-	-			-	-		-	-	2	-0	-0-	~~~	~	~~- ~	
$v_{02} = 02$	-	-	-	_	-	_	-	-	-	-	-	-	-	-	1	5	7	ŝ	8	8	7	4	1	4
W6 = 03	9+	9	2	-	-	-	-	-	-	-	-	-	-	-	-	5	9+	9+	9+	9+	9+	9+	9+	9+
W0 = 04	9+	9+	6	-	-	-	-	-	-	-	-	-	-	-	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+
W3 = 05	1	-	-	-	-	-	-	-	-	-	-	-	1	1	1	1	1	-	-	-	-	-	-	1
XE1 = 06	9	5	9	7	1	1	1	2	5	4	-	-	-	8	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+
TI = 07	9	4	9	7	5	з	2	3	4	2	-	2	9	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+
VP2 = 08	9+	9	7	4	4	4	4	4	1	-	-	4	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+
P4 = 09	9	9+	8	7	6	6	5	6	3	-	1	4	8	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	8
HC = 10	8	7	-	-	-	-	-	-	-	-	-	-	7	5	9+	9+	9+	9	9	9	9	9+	9+	4
PY1 = 11	9	7	4	2	3	4	4	1	-	-	2	9	9+	9	8	7	8	8	9	9+	9+	9+	9+	9+
CE = 12	9+	8	5	4	3	3	2	2	-	-	-	-	9	9	8	8	7	8	8	9	9	9+	9+	9+
LU = 13	9+	7	5	4	2	4	4	3	-	-	-	5	9+	9	8	7	7	8	8	9	9+	9+	9+	9+
G = 14	-	-	-	-	-	-	-	-	-	-	-	-	9+	9+	9+	9+	9+	9+	9+	9+	2	-	-	-
I = 15	-	-	-	-	-	-	-	-	-	-	-	1	6	9+	9+	9+	9+	2+	8	9	2	-	-	-
UA3 = 16	-	-	-	-	-	-	-	-	-	-	-	-	6	9	9	9	8	5	1	-	-	-	-	-
UN = 17	-	-	-	-	-	-	-	-	-	-	-	-	2	9	9	6	1	-	-	-	-	-	-	-
UA9 = 18	-	ĩ	2	-	-	-	-	-	-	-	-	-	-	6	2	1	-	-	-	-	-	1	-	-
UAU = 19	8	6	2	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	3	8	9
4X = 20	-	-	-	-	-	-	-	-	-	-	-	1	9	9	9	9	9+	9	6		2	-	-	-
HZ = 21	2	-	-	-	-	-	-	-	-	-	-	-	9		9	9	2	8	6	4	1	1	1	2
VU = 22 TT = 23	-	-	-	-	-	-	-	-	-	-	-	-	2+	4	9	,	4	1	-	-	T	T	T	-
$v_{26} - 24$	5	2	-	1	-	-	-	-	-	-	-	-	5*	Ē	4*	2	2	1	1	1	-	-	1	-
TA1 - 25	8	6	1	-	-	_	-	-	-	-	-	-	4*	2*	1*	-	-	-	-	-	1	7	0.1	ó.
HS = 26	5	2	-	-	-	-	-	-	-	-	-	-	1*	7	0+	0	8	6	4	4	4	-	-	-
DU = 27	7	4	_	_	_	_	_	_	-	_	-	_	5*	4*	5	7	5	4	2	-	-	-	4	9
YB = 28	5	1	-	-	-	-	-	-	-	-	-	-	3*	2	9	9+	9	9	9	9+	7	-	-	1
VK6 = 29	8	2	1	-	-	-	-	-	-	-	-	-	_	-	1	9	9+	9	9	7	_	-	8	9
VK3 = 30	4	5	з	1	-	-	-	-	-	-	-	-	-	-	9	7	2	-	-	1	7	6	5	5
кнб = 31	9	9	6	з	-	-	-	-	-	-	-	-	-	-	-	-	-	9	9	9	9	9	9	9
кн8 = 32	8	9	8	5	-	-	-	-	-	-	-	-	-	-	6	-	-	4	8	8	8	8	7	8
CN = 33	-	-	-	-	-	-	-	-	-	-	-	8	9	9+	9+	9+	9+	9+	9+	9+	9+	8	2	-
SU = 34	-	-	-	-	-	-	-	-	-	-	-	1	9	9	9	9	9+	9+	9	8	5	2	-	-
6W = 35	1	-	-	-	-	-	-	-	-	-	-	9	9+	9	9	9	9	9+	9+	9+	9+	9+	9+	8
D2 = 36	8	1	-	1	1	5	-	-	-	-	-	8	8	8	7	8	9	9	9+	9+	9+	9+	9+	9
5Z = 37	5	-	-	-	-	-	-	-	-	-	-	8	8	8	8	9	9	9+	9+	9+	9+	9+	9	8
ZS6 = 38	3	-	-	-	-	-	-	-	-	-	-	7	6	5	5	6	8	9	9	9+	9+	9+	9+	9
FR = 39	4	-	-	-	-	-	-	-	-	-	-	6	6	6	7	8	9	9	9+	9+	9+	9+	9	8
FJL = 40	-	-	-	-	-	-	-	-	-	-	-	-	-	1	2	4	4	5	4	4	2	-	1	-
Zone	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	UTC	>																						

Expected signal levels using 1500 W and 4-element Yagis at 60 feet at each station.

Propagation Predictions

Scaling signal levels for different size stations:

- Subtract 2 S units for a dipole instead of a Yagi
- Subtract 3 S units for a dipole at 50' instead of a Yagi at 100'
- Subtract 1 S unit for a dipole at 50' rather than a dipole at 100'
- Subtract 3 S units for 100 W rather than 1500 W

RER

Propagation Predictions

15 Meters: Feb. 2003, YCCC, for SSN = High, Sigs in S-Units. By N6BV, ARRL. UTC --> 00 01 07 12 13 15 18 21 23 Zone 02 03 04 05 06 08 09 10 11 14 16 17 19 20 22 KL7 = 015 2 Q 9+ 9+ 0 1 9+ 9+ 9+ V02 = 021 5 7 8 8 8 7 4 1 4 03 5 9+ 9+ 9+ 9 +9+ W6 = 9+ 0 2 9+ 9 +9+ 04 W0 = 9+ 9+ 6 9+ 9+ 9+ 9+ 9+ 9+ 9.4 9+ 9+ 9 +W3 = 05 1 1 1 1 1 1 1 9+ XE1 = 069 5 9 7 1 1 1 2 5 8 9+ 9+ 9+ 9+ 9+ 9+ 9+ 9+ 9+ 4 _ 7 2 TT = 07 9 4 9 5 з 2 з 4 2 Q 9+ 9+ 9+ 9+ 9+ 9+ 9+ 9+ 9+ 9+ 9+ 7 VP2 = 089+ 9 4 4 4 4 4 1 4 9+ 9+ 9+ 9+ 9+ 9+ 9+ 9+ 9+ 9+ 9+ 9+ 8 7 6 5 6 3 8 P4 =09 9 9+ 6 1 4 9+ 9+ 9+ 9+ 9+ 9+ 9+ 9+ 9+ 9+ 8 8 7 7 5 9+ 9+ 9+ 9 9 9 Q 9+ 4 HC =10 9+ 9 7 4 2 з 4 4 1 2 9 9+ 9 8 7 8 8 9 9+ 9+ 9+ 9+ 9+ PY1 = 11CE =12 9+ 8 5 4 з з 2 2 Q Q 8 8 7 8 8 Q Q 9+ 9+ 9+ 7 5 2 3 5 9 8 7 7 8 8 13 9+ 4 4 4 9+ Q 9+ 9+ 9+ 9+ LU =9+ 9+ 9+ 9+ 9+ 9 +9+ 9+ 2 G = 14 -I = 15 1 6 9+ 9+ 9+ 9+ 9+ 8 Q 2 6 9 9 5 UA3 = 169 8 1 TTN =17 2 0 0 6 1 ---UA9 = 181 2 _ 6 2 1 1 ---UAO = 19 8 6 2 1 1 3 8 Q. _ _ Q Q Q 9 9+ 9 2 4x =20 _ 1 6 21 2 9 Q Q 9 9 8 6 1 2 HZ =4 1 1 VU = 22 5 9+ Q 7 2 1 1 1 1 _ --2* 23 6 4 JT =4 1 1 _ _ _ 1 ----1 -5* 2 2 7 VS6 = 245 2 6 4* 1 1 1 1 _ 7 JA1 = 258 6 2* 9+ 1 4* 1* 1 9+ 26 5 2 7 9 HS = 1* 9+ 8 6 4 4 4 -27 7 4 5* 4* 5 7 5 4 2 4 9 DU =YB = 28 5 1 3* 2 9 9+ 9 9 9 9+ 7 1 VK6 = 29 8 2 1 1 9 9+ 9 9 7 8 Q 7 5 VK3 = 304 5 з 1 ۵ 7 2 1 6 5 --9 9 9 KH6 = 319 9 6 з 9 9 9 9 KH8 = 328 Q 8 5 6 4 8 8 8 8 7 8 8 Q 9+ 9+ 9+ 9+ 9+ 9+ 9+ 9+ 8 2 CN =33 5 2 34 1 0 0 0 0 9+ 9+ Q 8 SU = --9 9+ 9+ 6W = 35 1 9+ 9 9 9 Q 9+ 9+ 9+ 9+ 8 D2= 36 8 1 1 1 5 8 8 8 7 8 9 9 9+ 9+ 9+ 9+ 9+ 9 37 5 8 8 8 8 Q Q 9+ 9+ 9+ 52 = 9+ 9+ Q 8 7 5 256 = 38з 6 5 6 8 Q Q. 9+ 9+ 9+ 9+ Q 7 FR =39 4 6 6 6 8 9 9 9+ 9+ 9+ 9+ 9 8 2 4 5 1 4 FJL = 404 4 2 1 -07 12 13 15 17 00 01 03 04 05 08 09 10 14 16 18 19 20 21 22 23 Zone 02 06 11 UTC -->

Expected signal levels using 1500 W and 4-element Yagis at 60 feet at each station.

Propagation Predictions

For example: W1 to Zone 22, VU2

On 15 meters, VU2 uses 100 W to a 50' high dipole instead of 1500 W to 100' high 4-ele. Yagi.

At 14 UTC, base prediction is for S9 signal. Signal = S9 - 3 (50' dipole) - 3 (100 W) = S3

At 15 UTC, base prediction is for S7 signal. Signal = S7 - 3 (50' dipole) - 3 (100 W) = S1

The Importance of Low Angles for DX

- And just in case you didn't know it, low takeoff angles are very important for DX work!
- Even on the low bands.

The Importance of Low Angles for DX, 80 Meters

Percentage of Time 80 Meters is Open, At or Below Each Elevation Angle Boston to World

The Importance of Low Angles for DX, 40 Meters

Percentage of Time 40 Meters is Open, At or Below Each Elevation Angle Boston to World

Domestic QSOs

What about short-range communications on 80 and 40 meters -- say, for the ARRL Sweepstakes or for Field Day?

Higher Angles for 80-Meter Domestic Work

80 Meters, Cleveland to Boston, Comparison of Antennas

A 100' 80-m Dipole is excellent for Field Day

Higher Angles for 40-Meter Domestic Work

40 Meters, Cleveland to Boston, Comparison of Antennas

A 50' 40-m Dipole is a Killer for Field Day!

A Takeoff-Angle Quiz

A station in London has a 22-foot high, 15meter dipole in his garden. (This puts his antenna about a halfwave above ground.) What is the takeoff angle?

a. 5°

- b. 10°
- c. 15°

d. 30°

RER

A Takeoff-Angle Quiz

30° = TOA for a halfwave over flat ground

A Propagation Quiz

A station in London is running 100 W to a halfwave high, 15-meter dipole in his garden. What mode & elevation angle to Boston is he using at 16 UTC in February, during a high part of the solar cycle?

a. 2F2 mode at 5°

- b. 3F2 mode at 15°
- c. 4F2 mode at 28°

The Ionosphere Controls

	Scrollw:C:\IT	SHFBC\RUN\\	/OACAPx.out	94015 bytes				_ 🗆 🗙
	<u>Eile E</u> dit							
V	SUMMARY	4 MODES	FREQ = 21	.2 MHZ UT	= 16.0			
						Most REL		
		2.F2	3.F2	3.F2	3. E	2.F2		
	TIME DEL.	18.19	18.94	19.47	17.88	18.19		
	ANGLE	4.86	14.68	18.16	4.10	4.86		
	VIR. HITE	256.09	302.93	366.86	125.30	256.09		
22'	TRAN.LOSS	142.19	143.34	155.72	970.06	142.19		
D !1.	T. GAIN	2.24	10.84	12.05	0.88	2.24		
Dipole –	R. GAIN	10.00	10.00	10.00	10.00	10.00		
agin	ABSORB	4.88	3.10	2.68	5.01			
gam	FS. LOSS	133.71	134.06	134.30	133.56			
	FIELD ST.	1.53	0.38	-12.00	-826.33	4.11		
	SIG. POW.	-122.19	-123.34	-135.72	-950.06	-119.61		
Strongest	SNR	57.19	56.04	43.66	-770.67	59.77		
Strongest	MODE PROB	0.93	0.44	0.44	0.00	0.93		
Mode,	R. PWRG	1000.00	1000.00	1000.00	1000.00	-16.77		
woole og it	RELIABIL	0.86	0.74	0.51	0.00	0.87		
weak as n	SERV PROB	1.00	1.00	0.56	0.00	1.00		
is	SIG LOW	15.70	25.00	25.00	10.74	17.89		
10	SIG UP	6.46	13.58	22.24	6.14	12.09		
	NOISE =	-179	S. POWER =	-119.6				
	SIGNAL =	10.7 9	.5 6.1	/ 4.5	3.6	1.3		
	NOISE =	6.1 -179	.4 2.3	/ 2.1	2.1	1.6		
	RELIAB =	12.3 59	.8 18.9					
	SPROB =	4.6 57	.2 4.6					
		Coefficient	S	METHOD 25	VOACAP 6	02.1106W PAGE	32	

The Ionosphere is Boss!

"You should always remember that it is the *ionosphere* that controls the elevation angles, *not* the transmitting antenna. The elevation response of a particular antenna only determines how strong or weak a signal is, at whatever angle (or angles) the ionosphere is supporting at that particular instant, for that propagation path and for that frequency."

This is on page 23-25, in *The ARRL Antenna Book*, 19th Edition.

160-meter propagation information:

http://solar.spacew.com/www/160pred.html

Planetary kp indices:

http://www.sel.noaa.gov/ftpmenu/plots/2002_plots/kp.html

General propagation information:

http://dx.qsl.net/propagation/index.html

Solar cycle information:

http://www.sec.noaa.gov/SolarCycle/

Effective sunspot number:

http://www.nwra-az.com/spawx/ssne24.html

160-meter propagation information:

http://solar.spacew.com/www/160pred.html

160 Meter Radio Propagation Prediction Table for

Middle and High Latitude Northern Hemisphere Circuits

	Alska	w.can	c.can	e.can	w.us	c.us	e.us	sw.us	sc.us	se.us	Mex.		U.K.	Spain	Frnce	c.eur	se.eur	Mos.	Israel	Jap.
Alska	Good	Poor	Poor	Poor	Poor	Poor	Poor	Poor	Poor	Poor	Poor	Alska	Poor	Poor	Poor	Poor	Poor	Poor	Poor	Poor
<u>w.can</u>	Poor	Good	Good	Poor	Good	Good	Poor	Good	Good	Good	Good	w.can	Poor	Poor	Poor	Poor	Poor	Poor	Poor	Poor
<u>c.can</u>	Poor	Good	Good	Poor	Good	Good	Good	Good	Good	Good	Good	c.can	Poor	Poor	Poor	Poor	Poor	Poor	Poor	Poor
e.can	Poor	Poor	Poor	Good	Poor	Good	Good	Good	Good	Good	Good	e.can	Poor	Poor	Poor	Poor	Poor	Poor	Poor	Poor
<u>w.us</u>	Poor	Good	Good	Poor	Good	Good	Good	Good	Good	Good	Good	w.us	Poor	Poor	Poor	Poor	Poor	Poor	Poor	Good
<u>c.us</u>	Poor	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	c.us	Poor	Poor	Poor	Poor	Poor	Poor	Poor	Poor
<u>e.us</u>	Poor	Poor	Good	Good	Good	Good	Good	Good	Good	Good	Good	e.us	Fair	Good	Fair	Fair	Fair	Poor	Fair	Poor
<u>sw.us</u>	Poor	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	sw.us	Poor	Good	Poor	Poor	Poor	Poor	Poor	Good
<u>sc.us</u>	Poor	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	sc.us	Poor	Good	Poor	Poor	Poor	Poor	Poor	Good
<u>se.us</u>	Poor	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	se.us	Fair	Good	Good	Fair	Fair	Poor	Fair	Poor
Mex.	Poor	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Mex.	Fair	Good	Good	Fair	Fair	Poor	Fair	Good
	Alska	w.can	c.can	e.can	w.us	c.us	e.us	sw.us	sc.us	se.us	Mex.		U.K.	Spain	Frnce	c.eur	se.eur	Mos.	Israel	Jap.
<u>U.K.</u>	Poor	Poor	Poor	Poor	Poor	Poor	Fair	Poor	Poor	Fair	Fair	U.K.	Good	Good	Good	Good	Good	Poor	Good	Poor
<u>Spain</u>	Poor	Poor	Poor	Poor	Poor	Poor	Good	Good	Good	Good	Good	Spain	Good	Good	Good	Good	Good	Good	Good	Good
<u>Frnce</u>	Poor	Poor	Poor	Poor	Poor	Poor	Fair	Poor	Poor	Good	Good	Frnce	Good	Good	Good	Good	Good	Good	Good	Good
<u>c.eur</u>	Poor	Poor	Poor	Poor	Poor	Poor	Fair	Poor	Poor	Fair	Fair	c.eur	Good	Good	Good	Good	Good	Good	Good	Good
<u>se.eur</u>	Poor	Poor	Poor	Poor	Poor	Poor	Fair	Poor	Poor	Fair	Fair	se.eur	Good	Good	Good	Good	Good	Good	Good	Good
Mos.	Poor	Poor	Poor	Poor	Poor	Poor	Poor	Poor	Poor	Poor	Poor	Mos.	Poor	Good	Good	Good	Good	Good	Good	Good
<u>Israel</u>	Poor	Poor	Poor	Poor	Poor	Poor	Fair	Poor	Poor	Fair	Fair	Israel	Good	Good	Good	Good	Good	Good	Good	Good
Jap.	Poor	Poor	Poor	Poor	Good	Poor	Poor	Good	Good	Poor	Good	Jap.	Poor	Good	Good	Good	Good	Good	Good	Good

Planetary kp indices:

http://www.sel.noaa.gov/ftpmenu/plots/2002_plots/kp.html

Solar cycle information:

http://www.sec.noaa.gov/SolarCycle/

Effective sunspot number:

http://www.nwra-az.com/spawx/ssne24.html

